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ABSTRACT

The health insurance characteristics of the population changes sharply at age 65 as most people become
eligible for Medicare.  But do these changes matter for health?  We address this question using data
on over 400,000 hospital admissions for people who are admitted through the emergency room for
"non-deferrable" conditions -- diagnoses with the same daily admission rates on weekends and weekdays.
Among this subset of patients there is no discernible rise in the number of admissions at age 65, suggesting
that the severity of illness is similar for patients on either side of the Medicare threshold.  The insurance
characteristics of the two groups are much different, however, with a large jump at 65 in the fraction
who have Medicare as their primary insurer, and a reduction in the fraction with no coverage.  These
changes are associated with significant increases in hospital list chargers, in the number of procedures
performed in hospital, and in the rate that patients are transferred to other care units in the hospital.
We estimate a nearly 1 percentage point drop in 7-day mortality for patients at age 65, implying that
Medicare eligibility reduces the death rate of this severely ill patient group by 20 percent.  The mortality
gap persists for at least two years following the initial hospital admission.
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Medicare pays nearly one-fifth of total health care costs in the United States. Yet, 

evidence on the health effects of the program is limited.  Studies of aggregate death rates before 

and after the introduction of Medicare show little indication of a program impact (Finkelstein 

and McKnight, 2005).  The age profiles of mortality and self-reported health in the population as 

a whole are likewise remarkably smooth around the eligibility threshold at age 65 (Dow, 2004; 

Card, Dobkin and Maestas, 2004).  While existing research has shown that the utilization of 

health care services increases once people become eligible for Medicare (e.g., Decker and 

Rapaport, 2002, McWilliams et al., 2003, Card, Dobkin and Maestas, 2004; McWilliams et al., 

2007), the health impact of these additional services remains uncertain. 

This paper presents new evidence on the health effects of Medicare, based on differences 

in mortality for severely ill people who are admitted to California hospitals just before and just 

after their 65th birthday.   Specifically, we focus on unplanned admissions through the emergency 

room for “non-deferrable” conditions – those with similar weekend and weekday admission 

rates.  We argue that the decision to present at an emergency room is unlikely to depend on 

insurance status for patients with these conditions.  Consistent with this assertion, the arrival rate 

is nearly identical for patients just under and just over age 65.  In contrast, admission rates for all 

causes jump 7% once people reach 65, and even total emergency room admissions rise by 3%. 

Focusing on non-deferrable admissions, we turn to an analysis of the age profiles of 

patient characteristics and outcomes, testing for discontinuities at age 65.  The demographic 

composition and diagnosis mix of the sample trend smoothly through the age 65 barrier, as 

would be expected under the assumption of no differential sample selection pre- and post-

Medicare eligibility.  On the other hand, the fraction of patients with Medicare as their primary 
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insurer rises by about 50 percentage points, while the fraction with no insurance drops by 8 

percentage points    

Associated with these changes in insurance we find a small but statistically significant 

increase in the number of procedures performed in the hospital, and a similar rise in total list 

charges. We also find a relatively large increase in the likelihood that patients are transferred to 

other units within the same hospital (mainly skilled nursing facilities) and a reduction in the 28-

day readmission rate.  Finally, using death records matched to our sample of hospital admissions, 

we find a clearly discernable drop in mortality once people become eligible for Medicare.  

Relative to people who are just under 65 when admitted, those who are just over 65 have about a 

1 percentage point lower likelihood of death within a week of admission, or roughly a 20 percent 

reduction in 7-day mortality.  A similar absolute reduction in mortality is registered at 28 days 

and 90 days, and persists for at least two years after admission, suggesting that the differential 

treatment afforded to those with Medicare coverage has an important long-run impact on patient 

survival. 

We conclude by discussing potential channels for the Medicare effect.  One possibility is 

that it reflects changes in treatment intensity and mortality for the small fraction (<10%) of 

patients who move from uninsured to insured status once Medicare is available.  In fact, the 

magnitude of our estimated mortality effect is too large (and too widely distributed) to be driven 

entirely by this group. We argue that a more plausible channel is the easing of case review 

procedures and other restrictions as patients who were previously covered by private insurance 

or Medicaid become Medicare-eligible at 65.  

The next section presents a brief overview of the Medicare program and existing research 

on its impacts.  Section III outlines our regression-discontinuity research design.  Section IV 



 3

describes our procedure for identifying non-deferrable emergency room admissions, and 

summarizes our tests for differential selectivity between patients just under and just over 65.  

Section V presents our main analysis of the age profiles of treatment intensity and mortality for 

the sub-sample of non-deferrable admissions.  Section VI discusses potential channels for the 

Medicare effect on treatment intensity and heath.  Section VII concludes. 

 

II. Medicare: Background and Previous Studies 

a. Medicare Eligibility and Health Insurance  

 Medicare is provided to people who are 65 or older and have worked at least 10 years in 

covered employment.1  Medicare is also provided to people under 65 who are receiving Social 

Security Disability Insurance (DI): currently about 12% of the population is already on the 

program by the time they reach 65.2  Age-eligible individuals can enroll on the first day of the 

month that they turn 65 and obtain Medicare hospital insurance (Part A) for free.  Medicare Part 

B, which covers doctor bills and some other charges, is available for a modest monthly premium. 

 The onset of Medicare eligibility leads to sharp changes in health insurance status at age 

65.  Figure 1 illustrates the transition using data from the 1999-2003 National Health Interview 

Surveys (NHIS) on four different dimensions of insurance coverage: Medicare coverage; any 

insurance coverage; coverage by multiple policies; and having primary insurance coverage in a 

managed care policy.  The figure shows the means of each outcome by age (measured in 

quarters), as well as the fitted age profiles from a simple regression that includes a quadratic in 

age, a dummy for age over 65, and interactions of the dummy with age and age-squared.  

                                                 

1 Spouses of people who qualify are also qualified.  U.S. citizens and legal aliens with at least five years of 
residency can also enroll in Medicare at age 65 by paying monthly premiums  
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 The fraction of people with Medicare coverage rises by about 60 percentage points at age 

65.3  Apart from this, the age profile is relatively smooth and well-described by a simple 

quadratic function.  Associated with the rise in Medicare coverage is an increase of about 9 

percentage points in the fraction of people with any coverage, leaving only about 3 percent of the 

population over 65 uninsured, compared with about 13% of those under 65. 

 The two other insurance characteristics shown in Figure 1 also change sharply at 65.  The 

fraction of the population covered by multiple policies rises by about 45%, as many of those with 

privately insurance before 65 obtain a supplemental policy to “top up” their Medicare coverage.4  

Conversely, the fraction of people covered by managed care in their primary policy falls by 30%.  

This drop reflects the relatively high rate of managed care coverage in the pre-65 insurance 

market, coupled with the relatively low fraction of Medicare recipients who choose managed 

care over traditional fee-for-service insurance.5 

 To summarize, the data in Figure 1 show striking changes in the heath insurance 

coverage of the population at age 65.  Within a few weeks of becoming eligible for Medicare, 

nearly 80% of the population is enrolled in the program.  In the process, about ¾ of those who 

were previously uninsured obtain coverage.  Many Medicare enrollees who were previously 

covered by a private plan enroll in a supplemental policy, creating a sharp rise in the incidence of 

                                                                                                                                                             

2 See Autor and Duggan (2003) for a recent analysis of trends in DI.  A very small number of people who need 
kidney dialysis are also eligible. 

3 Other data sources (e.g., the Survey of Income and Program Participation and the Current Population Survey, show 
somewhat higher Medicare enrollment after age 65.  We suspect that at least some of the over-65 respondents in 
the NHIS who do not report Medicare are actually covered.  It is widely believed that the participation rate in 
Medicare Part A by people eligible for the program is close to 100% (Remler and Glied, 2003).  

4 Medicare Parts A and B include significant deductibles and require a co-insurance payment of 20% on many bills.  
Some individuals obtain supplementary coverage through a previous employer, while others purchase a private 
“Medigap” policy.  

5 In our NHIS sample about 85% of Medicare recipients are enrolled in traditional fee-for-service Medicare. Prior to 
2003 the only managed care option in Medicare was to enroll in a Medicare HMO plan. 
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multiple-coverage.  And, since most Medicare recipients choose traditional fee-for-service 

coverage, the fraction of the population with managed care is cut in half.   

 

b. Impacts of Medicare 

Existing research has shown that the onset of Medicare age-eligibility leads to an increase 

in the use of health services.  Two early studies focus on changes in the use of medical screening 

procedures by people who were less likely to have health insurance prior to 65.  Decker and 

Rapaport (2002) find a relative increase in mammogram screenings by less-educated and black 

women after 65.  McWilliams et al. (2003) find that medical screenings increase more for people 

who lacked insurance coverage in the two years before reaching age 65.  A study by Dow (2004) 

compares changes in hospitalization rates from 1963 (3 years before the introduction of 

Medicare) to 1970 (4 years after) for different age groups and finds a relative rise among those 

65 and older.  Card, Dobkin, and Maestas (2007) examine the age profiles of hospital admissions 

in California, Florida, and New York, and find large increases in hospitalization rates at age 65, 

particularly for elective procedures like coronary bypass surgery (16% increase in admission 

rates), and hip and knee replacement (23% increase).  McWilliams et al. (2007) find that 

hospitalizations and doctor visits rise among previously uninsured individuals with hypertension, 

heart disease, diabetes, or stroke diagnosed before age 65.  

As is true for health insurance more generally (see Levy and Meltzer, 2004), it has 

proven more difficult to identify the health impacts of Medicare.6  Most existing studies have 

                                                 

6 Currie and Gruber (1996a, 1996b) find  that Medicaid insurance for low-income pregnant women leads to 
improvements in health of newborns and a reduction in infant mortality. 
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focused on mortality as an indicator of health.7  An early study by Lichtenberg (2001) used 

Social Security Administration (SSA) life table data to test for a trend-break in the age profile of 

mortality at age 65.  Although Lichtenberg identified a break, subsequent analysis by Dow 

(2004) showed that this is an artifact of the interval smoothing procedure used to construct the 

SSA life tables.  Comparisons based on unsmoothed data show no evidence of a shift at age 65 

(Card, Dobkin, Maestas, 2004).  Finkelstein and McKnight (2005) explore trends in state-

specific mortality rates for people over 65 relative to those under 65, testing for a break around 

1966 – the year Medicare was introduced.  They also examine the correlation between changes in 

relative mortality after 1966 and the fraction of elderly people in a region who were uninsured in 

1963.  Neither exercise suggests that the introduction of Medicare reduced the relative mortality 

of people over 65.  

 

III.  A Regression Discontinuity Analysis of Health Outcomes 

Like earlier studies, we use comparisons around the age threshold for Medicare eligibility 

to measure the health impacts of the program. Unlike most existing studies, however, we attempt 

to isolate a sub-population whose immediate mortality experience is more likely to be affected 

by differences in health care services provided to people once they are eligible for Medicare.  

Specifically, we focus on people who are admitted to the hospital through the emergency room 

for relatively severe illnesses.  Any extra services offered to the Medicare-eligible subset of this 

population have at least a plausible chance of affecting short run mortality.  By comparison, 

                                                 

7 An exception is Card, Dobkin, and Maestas (2004), where we look at age profiles of self-reported health status.  
These are relatively smooth around age 65.  Decker (2002) examines the outcomes of breast cancer patients pre- 
and post Medicare eligibility and finds some evidence of better outcomes for those over 65. 
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Medicare-induced services would have to have a very large impact on mortality to generate a 

detectable effect on a relatively healthy population.8 

Our analysis is based on a reduced form regression-discontinuity (RD) model of the 

form: 

(1) yi  =  f(ai, α)  +  Post65i β  +  εi 

where yi represents a health-related outcome for patient i, ai represents the patient’s age 

(measured in days), f( ) is a function that is continuous at age 65 with parameters α (e.g., a 

flexible polynomial), Post65i  is an indicator for whether the patient has passed his or her 65th 

birthday, and εi is an error term reflecting the influence of all other factors.  If yi  is a measure of 

health care services provided to patient i, then we interpret β as a scaled estimate of the causal 

effect of Medicare coverage on the provision of services.   As in other “fuzzy” RD designs 

(Hahn, Todd, and van de Klauuw, 2001), the scale factor is just the difference in the probability 

of treatment on either side of the threshold, although in the case of Medicare, the treatment is 

potentially multi-dimensional (see section VI).9   If yi  is an indicator for mortality over some 

time horizon, then we interpret β as a scaled estimate of the causal effect of Medicare coverage 

on the likelihood of death in that time interval.  

 We defer a detailed discussion of the possible channels leading to the reduced form 

impact of Medicare coverage on health care services to Section VI.  For now, we note that the 

data in Figure 1 suggest at least three alternatives: (1) an effect attributable to the increase in the 

overall fraction of the population with any health insurance; (2) an effect driven by people 

                                                 

8 For example, in a randomized trial in which Medicare were made available to a treatment group of 65 year olds 
and withheld from the controls, the program would have to have a 7% impact on annual mortality to detect a 
statistically significant effect in a one-year follow-up, even with 100,000 observations in each group.  The reason 
for the low power is that the baseline mortality rate of 65 year olds is only about 1.5% per year.  
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switching from an insurance carrier other than Medicare to a package that includes Medicare;10   

(3) an effect attributable to the change from managed care coverage to indemnity insurance.  For 

example, hospitals may provide extra services if they know a patient is covered by Medicare and 

supplemental insurance, rather than being uninsured, or covered by a typical pre-65 policy.  

Alternatively, there may be a reduction in the delay in verifying insurance status for Medicare 

patients, or in receiving approval for certain procedures that are limited by managed care 

providers.  

As emphasized by Lee (2007), the key assumption underlying an RD analysis is that 

assignment to either side of the discontinuity threshold (in our context, to being observed just a 

few weeks older or younger than 65) is as good as random.  In the context of equation (1) this 

implies  

(2) E[ εi | 65−δ < ai < 65]  =  E[ εi | 65 ≤ ai < 65+δ ]     for δ sufficiently small , 

which ensures that a simple comparison of the mean of yi on either side of the age 65 threshold 

yields a consistent estimate of the parameter β. 

In a sample of hospital admittees the assumption that patients close to age 65 are “as 

good as randomly assigned” to either side of the age threshold may fail if insurance status affects 

the probability a patient is admitted to the hospital.  Since previous work has found that the onset 

of Medicare eligibility leads to an increase in hospitalization rates (Card, Dobkin, and Maestas, 

2007) this is a serious threat to an RD analysis of the health outcomes of patients.  Figure 2 

illustrates the difficulty using counts of hospital admissions based on California discharge 

records from 1992 to 2002.   (The sample is described more precisely below).  At age 65 the 

                                                                                                                                                             

9 See Imbens and Lemieux (2007) for an overview of recent work on regression-discontinuity methods.  The causal 
effect is only identified for the subset of people whose status is changed at age 65. 
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number of non-Emergency Room admissions jumps by approximately 12%, while the number of 

Emergency Room admissions rises by 3%.  Assuming that the additional patients are not as sick 

as those who would enter hospital regardless of Medicare eligibility, the average health of 

patients rises discretely at age 65. 

In this paper we attempt to solve the sample selection problem by focusing on a subset of 

patients who are admitted through the emergency room (ER) for a relatively severe set of 

conditions that require immediate hospitalization.  Specifically, we identify a set of admission 

diagnosis codes with similar ER admission rates on weekdays and weekends.11  We then test the 

assumption that there is no remaining selection bias associated with the age 65 boundary by 

looking for discontinuities in the number of admissions at 65 and the characteristics of patients 

on either side of the boundary.  Importantly, our procedure for identifying an unselected sample 

is unrelated to the age of patients.  Thus, our tests for selection bias are unaffected by “pre-test 

bias,” and provide a reasonable degree of confidence in the validity of our inferences. 

As a check on inferences from this sample, we also use a simple bounding procedure 

(Horowitz and Manski, 1995) to estimate a lower bound (in magnitude) for the impact of 

Medicare eligibility on other patient samples, including the overall population of hospital 

admissions.  This bound is fairly tight because the relative size of the group of “extra” patients 

who only enter the hospital if they are over 65 is modest (at most 12%) and because the gap 

between actual mortality experience of all patients and the “worst case” bound for the extra 

patient group is small.  For example, the average 28-day mortality rate of all people admitted to 

                                                                                                                                                             

10 Arguably, one could break out this effect into an effect associated with Medicare coverage per se, and an effect 
associated with coverage by multiple policies. 

11 Hospital admissions are typically much lower on weekends than weekdays, in part because of staffing constraints.  
Dobkin (2003) shows that mortality rates for patients admitted on the weekend for diagnoses with a constant daily 
admission rate are the same as for patients admitted during the week. 
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the hospital who are just over 65 is 4.6%, whereas the lower bound on the mortality of the extra 

patients is 0.  As we discuss below, this means that the “worst case” bias created by the selective 

inflow of patients after 65 is −0.3 percent – a relatively small bias. 

Even if there is no differential selection around the discontinuity threshold, inferences 

from an RD design can be compromised if there are other factors that change at the threshold.  

One concern is retirement: 65 is a traditional retirement age, and studies have shown that health 

is affected by employment status (Ruhm, 2000).  Nevertheless, we believe the confounding 

effect of retirement is relatively minor.  First, as shown in Appendix Figure A, recent data show 

no discontinuity in the likelihood of working at exactly age 65.12  Second, the admission 

diagnoses included in our non-deferrable sample are relatively severe, and would normally 

preclude an immediate return to work.  But the mortality gap we observe in this sample at age 65 

emerges within 7 days of initial admission to the hospital, and thus is unlikely to reflect 

differences in survival between people who return to work and those who do not. 

Another concern with the age 65 threshold is that recommended medical practices may 

change at this age.  Until recently, for example, U.S. government agencies recommended 

different influenza vaccination policies for people over and under 65 (Smith et al, 2006).  Again, 

however, we think this is unlikely to affect the characteristics or treatment of patients admitted 

through the ER for non-deferrable conditions.  

 

                                                 

12 This figure shows employment rates by quarter of age, using data from the 1992-2003 National Health Interview 
Surveys. The spike in retirement at age 65 has largely disappeared in the past two decades (von Wachter, 2002), 
reflecting the elimination of mandatory retirement and the availability of Social Security benefits at age 62. 
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IV. Sample Construction and Validation 

Our sample is drawn from the universe of records for patients discharged from hospitals 

regulated by the State of California between January 1, 1992 and December 31, 2002.  To be 

included in the sample patients must have been admitted; thus, those who were sent home after 

treatment in the emergency room do not appear in the sample.13   As explained in the Data 

Appendix (available on request), we drop discharge records for patients admitted before January 

1, 1992, or on or after December 1, 2002, to avoid length-biased sampling problems. 

The discharge dataset includes basic patient information (month of discharge, age in days 

at the time of discharge, gender, race/ethnicity, and zip code of residence) as well as medical 

information, including the principal cause of admission (which we call the “admission 

diagnosis”), whether the admission was planned or unplanned, the route into the hospital (ER 

versus non-ER), the patient’s primary health insurance provider, the length of stay, and a list of 

all procedures performed in the hospital.  It also includes a scrambled version of the patient’s 

Social Security Number, which can be used to track patients who are transferred within or 

between hospitals, and to link mortality records.  The Data Appendix describes our procedures 

for consolidating the records for patients who were transferred to new units in the same hospital, 

or to another hospital.  It also describes the linked discharge-mortality file that we merge with 

the initial discharge file in order to determine the date of death for patients in the sample.  

One notable data issue is that approximately 5% of 64-year old patients in our sample 

have a missing SSN, compared with about 4% of those just over 65.  Given that the in-hospital 

mortality rate of patients with a missing SSN is much higher than that of patients with a valid 

SSN (10.4% v. 6.3%), we believe that the ability to match longer-term mortality outcomes for 
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1/5th of this group once they reach 65 will tend to bias down any observed mortality 

improvements at 65.  In any case, in Section V.e we present evidence showing that the mortality 

effects we estimate are unlikely to have arisen mechanically as a result of merging procedures or 

selectively missing data. 

As discussed in the previous Section, a critical step in our analysis is to select a subset of 

patients whose admission to the hospital is independent of insurance status.  We do this by 

identifying a set of admission diagnosis codes (classified by 5-digit ICD-9) that have similar 

unplanned admission rates through the ER on weekdays and weekends.  Arguably, these 

diagnoses are “non-deferrable,” and patients with these conditions will present at the ER at the 

same rate just before and just after their 65th birthday, irrespective of Medicare coverage. 

Figure 3 shows how the distribution of the fraction of weekend admissions for different 

diagnosis codes changes as we focus on more restrictive subsets of admissions.  The density for 

all admission diagnoses is centered on 0.24, far below the 2/7=0.29 rate expected if admissions 

were equally likely on weekends and weekdays.  Clearly, there are many ICD-9 codes with 

lower admission rates on the weekend than during the week.  The density for the subset of 

emergency admissions has a mode near 2/7 but is still skewed to the left, suggesting that even 

among ER admissions there are many diagnoses with an under-representation of weekend 

admits.   Finally, the spiked density in Figure 3 shows the distribution of the fraction of weekend 

admits among unplanned ER admits, limiting the set of ICD-9 codes to those for which the t-

statistic for a test of similar weekend and weekday admission rate (i.e., the fraction of weekend 

admits= 2/7) is less than 0.965.  This distribution is tightly centered around 2/7. 

                                                                                                                                                             

13 According to a national survey of hospitals conducted by the General Accounting Office (2003), approximately 
15% of the patients seen in an emergency room are admitted to the hospital. 
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Table 1 summarizes the 10 most common admission diagnoses codes in this subsample 

of 425,315 “non-deferrable” admissions.  The largest diagnosis category is obstructive chronic 

bronchitis with acute exacerbation. (This includes chronic bronchitis with emphysema, known as 

“chronic obstructive pulmonary disease” – a common diagnosis for smokers and ex-smokers).  

Patients with this condition have an average hospital stay of 6.23 days, an average of 1.21 

procedures performed during their stay, and a 4.7% 28-day mortality rate.  Most of the other 

relatively common admission codes result in even longer stays, more procedures, and a higher 

death rate.  On average, it appears that diagnoses with the same admission rates on weekdays and 

the weekend are extremely acute and often life-threatening. 

To test that patients’ inclusion in the “non-deferrable” admissions subsample is 

independent of whether they are under or over 65, we conducted a regression discontinuity 

analysis of the count of admissions by age.  This procedure is similar to the test of manipulation 

proposed by McCrary (2007), though we have a discrete running variable (age, measured in 

days) and we use a parametric rather than a non-parametric approach.  Figure 4 shows the age 

profiles of the log of the daily admission count for four groups of ER admissions, based on the 

magnitude of the t-statistic for the test of a constant weekday/weekend admission rate.   The 

groups of admission diagnoses with t-statistics in the top two quartiles (t>6.62, and 2.54<t<6.62) 

show clear evidence of a jump at age 65, whereas the age profile for diagnoses in our preferred 

group, with |t| < 0.965,  shows no visible evidence of an increase in admissions.   

Formal testing results are summarized in Table 2.  Each of the 6 panels in this table 

presents two different RD specifications for the log of the number of admissions by age (in days) 

of the admitted patient.  We focus on people between the ages of 60 and 70, resulting in 3,652 

observations – one for each potential value of age in days.  Both specifications include a dummy 
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for age over 65 and a quadratic polynomial fully interacted with the post-65 dummy.  We have 

also fit the models with cubic polynomials and found no significant differences in the estimated 

values of the post-65 effects (see Appendix Table B). 

A limitation of our data set is that although we know each patient’s age in days at the 

time of admission, we do not know birthdates or exact admission dates.14  Since Medicare 

eligibility begins on the first day of the month that a person turns 65, people who are admitted in 

the period up to 31 days before reaching their 65th birthday may or may not be eligible for 

Medicare.  Appendix Figure C shows the fraction of admitted patients in our non-deferrable 

sample who are recorded as having Medicare as their primary insurance provider, by age in days 

for a narrow window around age 65.  This fraction is relatively flat for people up to a month 

before their 65th birthday, then rises linearly in the 31 days before reaching age 65, as would be 

expected given Medicare eligibility rules and a uniform distribution of birthdates.   

Because we do not know the Medicare eligibility status of patients who are admitted 

within 31 days of their 65th birthday, the second specification reported in each panel of Table 2 

includes a dummy for these observations.  The addition of this dummy has relatively little impact 

on the estimated coefficients.15  Looking at the first two panels, we estimate that non-ER and 

planned ER admissions rise by about 12% at 65, while unplanned ER admissions rise by 2.5%.  

The remaining four panels report the results for the four quartiles of unplanned ER admissions 

shown in Figure 4.  As suggested by the graph, the estimated models show no discernable rise in 

admissions for our preferred subgroup of diagnoses with the lowest t-statistic for the comparison 

between weekday and weekend admission rates.  

                                                 

14 This restriction was imposed by the California Department of Health and Human Services as a condition for 
access to the discharge files. 
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We have also checked for discontinuities in the case mix and demographic composition 

of the non-deferrable subsample at age 65.  Tests for jumps in the racial composition, gender, 

and fraction of Saturday or Sunday admissions (available on request) are all far below 

conventional critical values.  To increase the power to detect differences in patient health, we 

used all the available covariates for an admission (including age, race/ethnicity, gender, year, 

month, and day of admission, and admission diagnosis fixed effects) to fit linear probability 

models for mortality over 7, 14, 28, 90 and 365 days.  We then took the predicted mortality rates 

from these models and conducted an RD analysis, looking for any evidence that the mortality 

characteristics shift at age 65.  The results for 7-day and 28-day predicted mortality are shown in 

Appendix Figure D. (Results for other windows are very similar and are available on request).  

The age profiles of predicted probability are extremely smooth, and show no jump at age 65.  In 

an RD specification with a quadratic in age and a dummy for over 65, interacted with the linear 

and quadratic terms, the t-statistics for the post-65 coefficient are 0.4 (7 day mortality) and 0.25 

(28 day mortality), providing no evidence that the observable health of the sample changes at age 

65.  In light of these testing results, we proceed under the assumption that patient health in the 

non-deferrable subsample trends smoothly at age 65.  

 

V. Shifts in Insurance, Health Services, and Mortality at 65 

a. Insurance  

We now turn to the impact of the Medicare eligibility age on health-related outcomes. 

We begin by looking at health insurance coverage.  Figure 5 shows the age profiles of the 

fractions of people with various primary insurers (private, Medicaid, Medicare, other, and none) 

                                                                                                                                                             

15 The bottom row of each sub-panel shows the p-value for a test that this additional variable has no effect.  In all six 
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in the non-deferrable admissions subsample.  Consistent with the patterns in Figure 1 for the 

overall population, we see a big increase in the fraction of patients with Medicare as their 

primary insurer at 65, coupled with a decline in the fraction with no insurance.  RD models for 

health insurance outcomes are presented in Table 3.  This table has the same format as Table 2, 

although we now include a set of covariates (year, month and day of admission, race/ethnicity, 

gender, and admission diagnosis fixed effects) in the specifications in columns 2 and 3 of each 

panel.  For reference, the specification in the first column excludes these controls and also 

excludes the dummy for admissions in the 31 days before a patient’s 65th birthday.16   

The regression results confirm the visual impressions conveyed in Figure 5.  At age 65, 

the fraction of patients with Medicare as their primary insurer rises by about 47 percentage 

points, while the fractions with private insurance and Medicaid both fall.17  Note that in the 

sample of non-deferrable admissions the Medicare coverage rate at age 64 is 24%, substantially 

higher than in the overall population (shown in Figure 1).  Presumably this reflects the fact that 

many of these patients are chronically ill and on DI prior to 65.  The fraction with no insurance at 

64 is correspondingly a little lower than in the overall population (10% versus about 13%), and 

the reduction in the rate of non-insurance at 65 is a little smaller (-8% in the nondeferrable 

subsample, versus -9.5% for the population as a whole).  Nevertheless, as in the population as a 

whole, patients with non-deferrable conditions have much different insurance coverage just after 

age 65 than just before. 

 

                                                                                                                                                             

panels the p-value is well above the usual critical value. 
16 As in Table 2, the bottom row of each sub-panel shows the p-value for a test of joint significance of the additional 

variables included in the specification in column 2 (relative to column 1) and in column 4 (relative to column 3). 
17 Unfortunately we have no information on secondary coverage. We suspect that many of the 45% who have 

private coverage prior to age 65 enroll in Medicare and a supplementary policy at 65. 
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b. Services 

We have three basic measures of patient services: length of stay, number of procedures 

performed, and total hospital list charges.18  Figure 6 shows the age profiles for these measures, 

while Table 4 presents RD models similar to the specifications in Table 3.  The age profile for 

mean length of stay is somewhat noisier than the other two profiles, but all three profiles suggest 

an upward jump at 65.  The estimation results in Table 4 show that mean length of stay increases 

by 0.4 days (or about 4.5%) at 65, though the estimated gain is only marginally significant.  

Similarly, the number of procedures jumps by 0.1, or approximately 4% (with a t-ratio around 4), 

while log list charges jump by 3 percent (with a t-ratio of around 3).   These increases, although 

modest in size, are consistent with the findings in earlier work, and confirm that the onset of 

Medicare eligibility leads to increased use of medical services.  Importantly, we are finding these 

increases for a sample of acutely ill patients arriving at the hospital for emergency treatment, 

rather than for elective procedures (as in Card, Dobkin, and Maestas, 2007) or preventive care 

screenings (as in Decker and Rapaport, 2002, or McWilliams et al., 2003). 

We also performed a more detailed analysis of the changes in the use of specific 

procedures at age 65 for two major sets of diagnoses: obstructive chronic bronchitis with acute 

exacerbation (the largest ICD-9 in our non-deferrable sample, shown in row 1 of Table 1); and 

acute myocardial infarction (AMI), which combines the various detailed AMI diagnoses in our 

non-deferrable sample.  The results are summarized in Table 5.  Looking first at AMI, we see a 

relatively large and precisely estimated increase in the overall number of procedures at age 65 (a 

rise of  0.44 on a base rate of 5.0 among 64 year-olds, or approximately 9%) and significant 

                                                 

18 We sum the duration of stay, list charges, and number of procedures for all consecutive stays. List charges are 
accounting charges, and do not represent the charges actually billed to insurers or patients.  They also exclude 
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increases of about 4% in the use of several important diagnostic procedures, including coronary 

arteriography, cardiac catheterization, and angiocardiography.19  In contrast, for obstructive 

chronic bronchitis patients, we see no change in the overall number of procedures, and small 

increases or decreases in the incidence of specific procedures.  This analysis suggests that the 

relatively small increase in the overall number of procedures for all admission diagnoses in Table 

4 is masking larger increases for certain “procedure intensive” diagnoses, like AMI, and near 

constancy for other diagnoses.  Unfortunately, the sample sizes for other diagnoses are too small 

to permit a more extensive investigation.  We conclude, however, that the onset of Medicare 

eligibility is associated with an increase in the use of specific potentially life-saving procedures. 

 

c. Transfers 

Patients who are initially admitted for acute care may be transferred (i.e., discharged and 

immediately re-admitted) to another care/treatment unit in the same hospital, to another hospital, 

or to non-hospital care (e.g., nursing homes).20  Because our data are derived from hospital 

discharge records, we cannot measure transfers to stand-alone skilled nursing facilities (SNF’s) 

or to other care options that may be substitutable with post-acute care in a hospital setting.  

Nevertheless, it is interesting to ask whether Medicare eligibility is associated with any change in 

the likelihood of patient transfer to other care units in the same hospital, or to a second hospital. 

 Figure 7 shows the age profiles of these two outcomes.  Both within- and between-

                                                                                                                                                             

charges for physician services, and are not reported for patients at Kaiser-run hospitals.  We interpret list charges 
as a convenient “price-weighted” summary of services rendered, albeit at somewhat artificial prices. 

19 Cutler and McClellan (2001) have estimated that invasive diagnosis and treatment procedures as a whole 
(including catheterization, angioplasty, and bypass surgery) are cost-effective in the treatment of AMI.  The 
efficacy of specific procedures is less clear: see e.g., McClellan, McNeil and Newhouse (1994) and Cutler, 
McClellan and Newhouse (1999)  

20 Note that to avoid double counting we have collapsed all consecutive hospital stays to a single record. 
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hospital transfer rates rise at age 65, with a particularly large rise in within-hospital transfers.  

Corresponding RD regression models are presented in the upper panel of Table 6, and confirm 

that the within-hospital transfer rate rises by about 1 percentage point (on a base level of about 

4% among 64 year olds) once patients are over 65.   

Further analysis (not shown) indicates that the rise in within-hospital transfers at 65 is 

driven by a jump in the transfer rate to skilled nursing facilities (SNF’s) in the same hospital.  

Until 1998, post-acute care delivered in skilled nursing facilities, rehabilitation units, and home 

health care agencies was reimbursed on a cost-basis, whereas acute care was covered by 

prospective payments (Cotterill and Gage, 2002).  Newhouse (1996, 2002) argues that the more 

generous reimbursement system for post-acute care contributed to the rapid growth in SNF’s 

(both within hospitals and in free-standing units), and to a relatively high rate of transfer of 

Medicare patients to SNF’s following their initial hospitalization.  The discontinuity in within-

hospital transfers at age 65 is consistent with this argument.  

Medicare reimbursement for post-acute care was switched to a prospective payment 

system in 1998, leading to a sharp reversal in the growth rate of hospital-based SNF’s (Dalton 

and Howard, 2002).  To check whether this change led to a shift in the transfer rate of Medicare 

patients to hospital-based SNF’s, we estimated separate RD models for within- and between-

hospital transfers for 1992-98 period and the 1999-2002 period.  Although the RD in between 

hospital transfers is essentially the same in the two period, the RD in within-hospital rates falls 

substantially, from 1.2 percentage points in the pre-1998 period (standard error 0.3) to 0.6 

percentage points in the post-1998 period (standard error 0.3). This provides further confirmation 

that hospitals were responding to the payment incentives in the pre-1998 system by transferring 
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patients to hospital-based SNF’s, and that the elimination of these incentives led to reduced use 

of hospital-based SNF’s for Medicare patients. 

Finally, Figure 8 and the RD models in the lower panel of Table 6 address the likelihood 

that a patient is re-admitted to the hospital (after at least 1 day out of the hospital).  This outcome 

could be interpreted as a measure of the “quality” of treatment in the initial hospital stay, 

although this interpretation is clouded by the impact of Medicare eligibility on mortality (since 

people who die cannot be readmitted). We focus on re-admission within 7 and 28 days of 

discharge.  The figures suggest that the readmission rate after 7 days is relatively flat through the 

age 65 threshold, while the readmission rate after 28 days drops significantly.  The RD models 

suggest that the 28-day readmission rate is about 0.6% lower for people just over 65, though the 

sampling error is relatively large.  We return to discuss this impact in more detail after we have 

presented the mortality impacts in the next subsection. 

 

d. Mortality 

 Figure 9 plots the age profiles for the probability of death within 7, 14, 28, 90, 180, and 

365 days of admission to the hospital, while Table 7 presents estimates from the RD regression 

models corresponding to each of these outcomes.  Inspection of Figure 9 shows that each of the 

mortality measures shows a drop on the order of 1 percentage point at age 65.  The regression 

estimates in Table 7 confirm this: we observe a reduction in 7-day mortality of about 1 

percentage point which persists over the longer follow-up periods.  The effect is relatively 

precisely measured in the shortest time intervals but has an increasing sampling error as the 

follow-up window is extended, yielding t-ratios of about 5 at 7 days, about 3 at 28 days, and 

around 1.8 at 365 days.  Figure 10 shows the estimated post-65 coefficients from RD regression 
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models at all possible follow-up windows from 1 day to 2 years, along with the associated 95% 

confidence intervals.21  The estimated mortality effect of Medicare eligibility on our sample of 

non-deferrable admissions is relatively stable at about 1 percentage point over the entire range of 

follow-up periods.   

 Our estimate of the mortality effect of Medicare eligibility is relatively large: it represents 

a 20% reduction in 7-day mortality, a 9% reduction in 28-day mortality, and a 3-4% reduction in 

1-year mortality relative to death rates among 64 year olds with similar conditions at admission.  

The fact that the effect emerges within 7 days and persists for two years suggests that the extra 

services or changes in the quality of services provided to Medicare-eligible admittees have an 

immediate life-saving effect, and lead to a significant gain in the duration of life. 

 It is worth noting that the mortality reductions estimated in Table 7 appear to reflect 

changes in the treatment of patients with Medicare within the same hospital, rather than patient 

sorting to higher-quality hospitals at 65.  The fractions of patients entering different kinds of 

hospitals show only small changes at age 65.  The largest change is a reduction of about 3 

percentage points in the fraction of non-deferrable admissions entering county hospitals.  

Interestingly, the 28-day mortality rate for 63-64 year olds is actually lower at county hospitals 

(6.8%) than at non-profit (9.2%), for-profit (9.0%), or district hospitals (9.7%) in our data, so it 

is implausible that such a small shift in patients out of these hospitals could have much affect on 

average mortality.22  Thus, it does not appear that Medicare reduces mortality by shifting patients 

to better hospitals.   

                                                 

21 These estimates are from our base specification with no additional controls (i.e., the first specification in each 
panel of Table 7). 

22 To see that the effect of a small amount of sorting is negligible, note that even if (contrary to fact) the mortality 
rate at county hospitals were 50 percent larger than that of private hospitals, it could account for at most a 
negligible amount of the estimated mortality gain: 0.03*0.045=0.00135 percentage points. 
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 In view of the relatively large mortality effects associated with Medicare eligibility, it is 

worth re-considering the estimated impacts on hospital re-admission rates.  A re-admission at 

some time interval (say 28 days) can only be observed if the patient is still alive:  i.e.,  

 P(re-admission) = P(re-admission|alive) × P(alive).   

At age 64, the average 28-day death rate for our sample of non-deferrable patients is 9.8%, while 

the unconditional re-admission rate after 28 days is 17.1%. This implies that the re-admission 

rate for people just under 64, conditional on being alive after 28 days, is 18.96%.  Our estimated 

RD models show a drop in the unconditional readmission rate of -0.63% (Table 6, 4th panel. 

specification (3)), and a drop in the mortality rate of -0.9% (Table 7, 3rd panel, specification (3)).  

Adding these to the base rates at age 64, the conditional re-admission rate for living patients rises 

to 18.08% at age 65.  Thus, correcting for the bias caused by mortality, the implied effect of 

Medicare eligibility on the 28-day conditional re-admission rate is -0.88% -- 40% larger (in 

absolute value) than the impact on the unconditional re-admission rate.  This is a relatively large 

impact and suggests that Medicare eligibility not only reduces mortality but also morbidity 

among surviving patients. 

 

e. Robustness of Mortality Estimates 

 To further probe our estimated mortality effects we used a simple bounding procedure to 

obtain lower-bound estimates of the (absolute) mortality effect of Medicare eligibility on broader 

samples of hospital admissions, including the entire patient population.  The basis of this 

procedure is the observation that in any sample of sick people close to age 65 there are two 

subgroups: one group (which we index with subscript 1) who enter the hospital regardless of 

whether they are Medicare eligible or not; and a second group (indexed by subscript 2) who will 
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only enter the hospital if they are over 65.  Let α ≥ 0 represent the sample fraction of the second 

group.  We have argued that among people with non-deferrable conditions, α = 0.  In more 

general patient populations, however, α >0, and a comparison of mortality between patients just 

over and just under 65 contains a selectivity bias. 

 Let m1 denote the mortality rate of the first group if they enter the hospital just before 

their 65th birthday and let m1′ denote the mortality rate if they enter after 65.  The causal effect of 

Medicare eligibility for group 1 is Δ = m1′- m1.  The observed mortality rate of the patient 

population who are just over 65 is an average for groups 1 and 2: 

 m⎯  =  (1-α)m1′  + αm2  =  (1-α)( m1 + Δ )  +  αm2  , 

where m2 is the post-65 mortality rate of group 2.  Using this expression it is easy to show that: 

(3) m⎯ − m1   =   Δ   −  α/(1−α) × ( m⎯  − m2 )  . 

Thus, the mortality differential between the post-65 patient population and the pre-65 patient 

population is equal to Δ, the causal effect of Medicare eligibility on group 1, plus a bias term: 

 Bias   =  −  α/(1−α) × ( m⎯  − m2 ) , 

which depends on the fraction of group 2, and the deviation of their post-65 mortality rate from 

the average of groups 1 and 2.   Since m2 > 0, a lower bound on the absolute value of the bias 

caused by the presence of group 2 in the post-65 patient population is  

(4) Worst-case Bias =  −α/(1−α) × m⎯ . 

This bias tends to 0 as α→0, and is proportional to m⎯ .   

 Table 8 presents estimates of the various terms in equation (3) for the 28-day mortality 

rate of various patient populations, including all patients (column 1); those who enter the hospital 

via a route other than the emergency room, or for a planned hospitalization (which we call 

“elective” admissions, in column 2); those who enter via the ER for an unplanned hospitalization 
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(column 3); and the four subgroups of the unplanned-ER group, based on admission diagnoses 

with different ranges of weekend versus weekday admissions (i.e., the four subgroups graphed in 

Figure 4) in columns 4-7.  The first row of Table 8 presents the estimated RD in the log of the 

number of hospital admissions at age 65, which is an estimate of α/(1−α).23   Row 2 shows the 

estimated change in the mortality rate of patients at age 65 (i.e., the estimate of m⎯ − m1), 

obtained from a RD model with an interacted quadratic function of age fit to aggregated 

mortality rates by age in days.24  Row 3 shows an estimate of the constant in the mortality 

regression, which is our estimate of the mortality rate for people just under 65.  (The implied 

estimate of m⎯  is therefore the sum of the entries in rows 2 and 3).   Row 4 shows our estimate of 

the worst-case selectivity bias, based on equation (4), while row 5 shows our lower bound 

estimate of the effect of Medicare eligibility on the patient population, and row 6 shows an 

estimated sampling error for this bound. Finally, for reference, row 7 shows the fraction of 

patients in each subgroup.  

Three key conclusions emerge from the table.  First, the lower-bound estimate of the 

overall effect of Medicare on the 28 day death rate of the entire patient population is -0.13% (and 

only marginally significant).  This is about one-tenth as large as our estimate of the effect on the 

non-deferrable admission group, who represent 12% of the overall patient population.  Second, 

for “elective” admissions (column 2), our point estimate of the lower bound mortality effect is 

actually positive (as it is for the top quartile of diagnoses with lowest weekend admission rates in 

                                                 

23 If α is the share of all potential patients who are only admitted after age 65, then the proportional increase in 
admissions at age 65 is (1 – (1- α))/(1-α)  =  α/(1-α), so the RD in log admissions is an estimate of α/(1-α). 

24 To construct a standard error for our lower bound we need to construct a standard error for Δ + α/(1- α) m⎯ , where 
Δ is the estimated RD in mortality, α/(1- α) is the estimated RD in log admissions, and m⎯  is the estimated 
mortality rate for those just over 65, which can be estimated as the constant in the mortality regression (assuming 
age is normalized to 0 at age 65) plus the value of the RD in mortality.  Since we need the covariance between the 
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column 5).  For these admissions we cannot rule out that selection bias explains the entire 

(relatively small) drop in mortality we see after age 65.  Even for the two middle quartiles of 

weekend/weekday admission codes the estimated lower bounds on the Medicare effect are small.  

Thus, virtually all of the (lower bound) mortality effect we observe for the overall patient sample 

is attributable to the reduction in mortality for the non-deferrable subgroup.   

 A third observation is that the unadjusted change in mortality at age 65 for the top 

quartile diagnosis group (column 4) is actually positive (+0.27%).  This is reassuring in two 

ways.  First, it proves there is no mechanical data problem that is causing us to measure lower 

death rates for all patients over 65.25  Second, the diagnoses in this quartile are relatively non-

life-threatening.  In particular, the 28-day mortality rate for 64- year-old patients in this group is 

only 2.7%, somewhat below the death rate for patients admitted on an elective basis.  It would be 

surprising if Medicare eligibility had much effect on mortality for such a relatively healthy 

group, and the estimates imply that it does not.   

 

VI. Discussion  

 Our empirical results point to a significant positive effect of Medicare eligibility on the 

intensity of treatment for acutely ill patients with non-deferrable conditions, a negative effect on 

re-admission rates, and a negative effect on patient mortality.  In this section we discuss the 

possible channels for this effect.  To aid in this discussion it is helpful to consider a simplified 

causal model in which Medicare eligibility affects insurance characteristics, insurance affects 

                                                                                                                                                             

estimated parameters from the mortality and admissions models, we fit the two RD’s as seemingly unrelated 
regressions using grouped age cells, and use the delta method to construct the sampling error. 

25 We believe that any such data problems are likely to bias the results in the opposite direction.  In particular, 
because the in-hospital mortality rate of people without SSNs is higher, at worst we would add to the sample at 65 
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health care services, and health services affect mortality.  Building on the analysis in Section II, 

suppose that patient i has a health insurance package with a vector of characteristics zi, including 

whether i has any coverage, whether he or she has Medicare or some other form of primary 

coverage, and (possibly) other characteristics.  Assume the age profile for zi is generated by a 

model of the form: 

 (5) zi   =    g(ai, γz)  +  Post65i π  +  υzi , 

where g is a smooth function of age (ai) with parameters γz, υzi is an error term that is mean-

independent of the dummy Post65i, and π represents the vector of discontinuities in insurance 

characteristics at age 65.  Suppose that health care services delivered to patient i, (Si) depend on 

age, an error term υsi, and the characteristics of the insurance package: 26 

 (6) Si    =  h(ai, γs)  +  θ′zi   +  υsi . 

Finally, assume the likelihood of death of patient i (yi=1) depends on age and on health services: 

 (7) yi   =  k(ai, γs)  +  λ Si  +  υyi  . 

Equations (5), (6) and (7) yield reduced form models like equation (1), with a discontinuity in 

health care services at age 65 equal to  

 (8a) βs  =  θ′π , 

and a discontinuity in mortality equal to: 

 (8b) βy  =  λ θ′π . 

 In this simplified setup, each element of the insurance package represents a separate 

“channel” that contributes additively to the reduced form effects on services and mortality.  For 

example, the kth element of zi contributes θk πk to the RD in services and  λ θk πk  to the RD in 

                                                                                                                                                             

a small group with higher potential mortality, which would lead to a rise in the measured death rate for people over 
65.  
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mortality.   Unfortuntately, we have no information on the individual components of θ, and only 

limited information on the vector π of insurance changes at age 65.  For example, we do not 

observe secondary coverage, or whether the primary insurance is managed care.  Nevertheless, it 

is possible to shed some light on the mortality effect associated with one key insurance 

characteristic: whether the patient has any insurance coverage or none.  

 In particular, note that the maximum contribution of the “any coverage” channel cannot 

exceed πc (the jump in coverage at 65) times the average mortality rate of uninsured 64-year 

olds, because the extension of coverage to the previously uninsured group can only reduce their 

mortality rate to 0.  The average 7-day mortality rate of uninsured patients who are just under 65 

years of age in our nondeferrable admission subsample is 0.05, while πc=0.08 (Table 3).  Thus 

the maximum reduction in mortality attributable to the reduction in the number of people with no 

health insurance is 0.004 – about 40% of the 7-day mortality effect we estimate.  This is an 

extreme bound because it is based on the assumption that none of the previously uninsured 

would die if they were covered.  A more plausible bound is that insurance coverage reduces the 

death rate by no more than one-half: in this case the “any coverage” channel can explain at most 

20% of the total mortality effect. 

 In principle we can gain some additional insight by comparing changes in health 

insurance, the intensity of treatment, and mortality for different subgroups of patients.27   

Unfortunately, the limited demographic variables in our discharge data make this a challenging 

exercise.  Comparisons across race/ethnicity groups are uninformative, because the sample sizes 

                                                                                                                                                             

26 This equation simplifies health care services to a single dimension.  In fact, changes in insurance can cause some 
types of services to rise and use of other services to fall (or stay constant). 

27 In particular, assume that π varies by subgroup, with a value of π(g) for subgroup g.  If  the parameters λ and θ are 
constant across groups then the discontinuity in services for group g is θ′π(g) and the discontinuity in mortality is λ 
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for blacks (n=41,000) and Hispanics (n=66,280) are too small to obtain useful estimates.  We 

also tried dividing patients into two groups based on the average fraction of 55-64 year-old 

patients from the same zip code who had no insurance coverage.  Even here, we were unable to 

estimate systematic differences in the changes in treatment intensity or mortality outcomes at age 

65 between residents from “low insurance” and “high insurance” zip codes.  (Results are 

available on request).  We do find significant increases in the numbers of procedures and 

significant reductions in mortality even for patients from the high-insurance zip codes (who have 

only a very small gain in the probability of insurance coverage at age 65), suggesting that a 

increase in insurance coverage per se is not the explanation for the impacts of Medicare.   

 Instead, we suspect that the measured mortality effects arise because Medicare imposes 

fewer restrictions than private insurance or Medicaid, leading to more (and possibly higher-

quality) services to Medicare patients.  This interpretation is similar to the conclusion reached in 

Card, Dobkin, and Maestas (2007), where we note that Medicare eligibility leads to increases in 

hospitalization rates for a wide range of procedures, with bigger increases for whites than blacks 

or Hispanics, even though whites tend to have higher rates of insurance coverage prior to age 65. 

  

VII. Summary and Conclusions 

 A longstanding question in health economics is whether health insurance affects health.  

This question is particularly relevant for Medicare, the largest medical insurance program in the 

country, which provides nearly universal coverage to people once they turn 65.  We focus on 

measuring the health effects of Medicare eligibility for a relatively sick population – specifically, 

people who are admitted to the hospital through the emergency room with diagnoses that have 

                                                                                                                                                             

θ′π(g).  By comparing the relative sizes of the discontinuities in insurance, treatment intensity, and mortality across 
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similar admission rates on weekdays and weekends.  In contrast to elective hospitalizations, there 

is no jump in these “non-deferrable” hospital admissions at age 65.  Moreover, the predicted 

mortality rate of admitted patients (based on demographics and admission diagnoses) trends 

smoothly.  These findings suggest that the underlying health of patients admitted with non-

deferrable conditions is very similar whether the patients are just under or just over 65. 

 In light of this conclusion, we use a regression discontinuity approach to measure the 

impacts of reaching age 65 on the intensity of treatment in the hospital, and on mortality for up 

to two years after the hospital admission.  We find modest but statistically significant increases 

in several measures of treatment intensity at age 65, including the number of procedures 

performed in hospital, total list charges, and the likelihood of transfer to other care units in the 

hospital.   Associated with these changes we find relatively large reductions in patient mortality 

at age 65.  Medicare eligibility reduces 7-day mortality by about 1 percentage point, with similar 

sized reductions at 14 days, 28 days, 90 days, and through the end of our follow-up period.  We 

probe the robustness of these findings by using a bounding procedure to evaluate the lower-

bound effect of Medicare eligibility on the entire hospital patient population.  The bounds for the 

overall population are consistent with the magnitude of the effect we estimate for patients with 

non-deferrable conditions, providing further credence to our basic results. 

 The magnitude of the estimated mortality effect of Medicare eligibility is too large to be 

driven solely by changes among the 8% of the patient population who move from no health 

insurance coverage to Medicare when they reach 65.  Instead, our findings point to a more 

widespread effect of Medicare on treatment intensity and mortality, including patients who were 

insured prior to 65.   We argue that this pattern is consistent with an “insurance generosity” 

                                                                                                                                                             

subgroups it is possible to judge whether the data are consistent with a “1-channel” explanation.  
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channel,  reflecting increased services (or the more timely delivery of services) for patients who 

are covered by Medicare and supplemental insurance relative to the typical insurance package 

held by people just under 65.  

Finally, it is worth noting that the reduction in mortality is achieved with only a modest 

rise in hospital list charges (around 4%).  This is an incomplete measure of the total cost increase 

associated with Medicare eligibility because it excludes doctor bills and charges for other non-

hospital personnel.  If these unobserved costs also rose by 4% we suspect that the implied cost-

benefit analysis for making Medicare available to people admitted for non-deferrable conditions 

would be very favorable.  However, Medicare eligibility also leads to large increases in the use 

of services by other, less sick, patients for whom the effects on mortality are very small, or even 

zero.  Whether the overall cost of the system is justified by the gains in health therefore remains 

an important issue for further research. 
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Notes: Estimated discontinuities (and standard errors) at age 65 from fully interacted quadratic shown. Models include dummy for uncertainty of eligibily status of people assigned to age=65.0. 
This point has been dropped from the figure.

 Figure 1: Changes in Health Insurance at Age 65, National Health Interview Data
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Notes: The points are the log of the average admission count. The fitted values are from regressions that include a second order polynomial in age fully interacted with a dummy for age >= 65 
and a dummy variable for the month before people turn 65.

Figure 2: Hospital Admission by Route of Admission (California 1992-2002)
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Notes: To create the figures above we computed the proportion of patients admitted on the weekend for each ICD-9. We then computed the KDE of the weekend admissions proportions over 
the ICD-9s. We repeated the process for admissions through the ER.

Figure 3: Proportion of Admissions that Occur on the Weekend by ICD-9
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Notes: See notes from Figure 2. For the sample of ER admissions the age profiles above are created by computing the t-statistic for the test that an ICD-9 has a weekend to weekday ratio of 
2:5. The admissions into quartiles based on the t-statistic.

Figure 4: Admission Through the ER by Quartile of Weekend Proportion of ICD-9
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Notes: Coverage is the expected primary payers. These figures are derived from the 425,315 admissions that show no evidence of selection.

Figure 5: Primary Insurance Coverage
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Notes: See notes from Figure 2. Charges are unavailable for 13.4% of the sample. At age 65 there is a discrete 0.6% decrease in the number of records where charges are unavailable. 
Individuals without a SSN have been dropped.

Figure 6: Three Measures of Within Hospital Treatment Intensity
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Notes: Inidividuals without SSNs are not included in the figure as they can't be tracked.

Figure 7: Transfer After Admission to the Hospital
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Notes: See notes from Figure 5. Days to readmission are computed from date of discharge. Individuals without a SSN have been dropped.

Figure 8: Readmitted to Hospital
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Notes: See notes from Figure 5. These deaths are coded based on death certificate data. They are linked to the hospital records based on SSN. Records without SSNs were dropped.

Figure 9: Died Either in or Out of Hospital
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Notes: Evolution of RDD and 95 percent confidence interval. Due to how the datasets were merged there is substantial censoring of deaths occurring more than 2 years after admission.

Figure 10: RDD in Mortality for the Three years After Hospital Admission
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Table 1: Ten Most Common ICD-9s in Non-deferrable Admission Sample

ICD-9 Admissions
Length of 

Stay Procedures
List 

Charges

Transfer 
Across 
Hospital

Died within 
28 Days

Obstructive chronic bronchitis with acute exacerbation 491.21 61,558 6.23 1.21 23,835 2.8 4.7
Respiratory failure 518.81 24,328 13.67 3.70 65,459 9.5 22.5
Acute myocardial infarction of other inferior wall first episode 410.41 21,192 7.23 5.13 52,798 26.0 6.9
Acute myocardial infarction of other anterior wall first episode 410.11 15,727 7.82 5.31 56,684 24.6 10.6
Intracerebral hemorrhage 431 10,755 17.77 3.63 61,870 15.0 29.6
Chronic airway obstruction, not elsewhere classified 496 9,102 6.46 1.47 18,868 3.1 7.7
Fracture of neck of femur Intertrochanteric section 820.21 6,868 14.15 2.66 39,614 9.8 2.9
Cerebral artery occlusion, unspecified 434.9 5,782 15.15 3.68 26,863 14.1 8.1
Convulsions unknown Cause 780.39 5,338 5.13 1.25 21,850 4.2 3.1
Asthma, unspecified with status asthmaticus 493.91 5,095 4.61 1.09 15,651 1.7 0.9
Note: Length of stay, procedure count and hospital list charges are totals for all sequential hospital stays.

  



Table 2: Changes in Admissions at Age 65 for California Hospital Admissions 1992-2002
Non ER or Planned ER and Unplanned

Age Over 65 (x100) 11.9 12.0 2.4 2.6
[0.5] [0.5] [0.5] [0.5]

Dummy Just Under 65 N Y N Y
Observations 3,652 3,652 3,652 3,652
R-Squared 0.87 0.87 0.81 0.81
P-Value 0.16 0.28

Weekend t-stat > 6.62 Weekend t-stat 2.54-6.62
Age Over 65 (x100) 3.2 3.3 3.6 3.7

[1.0] [1.1] [0.9] [1.0]
Dummy Just Under 65 N Y N Y
Observations 3,652 3,652 3,652 3,652
R-Squared 0.39 0.39 0.54 0.54
P-Value 0.76 0.56

Weekend t-stat 0.96-2.54 Weekend t-stat < 0.96
Age Over 65 (x100) 2.7 3.0 0.6 0.6

[0.9] [1.0] [0.9] [0.9]
Dummy Just Under 65 N Y  N Y
Observations 3,652 3,652  3,652 3,652
R-Squared 0.63 0.63 0.52 0.52
P-Value 0.20 0.85
Notes: Standard errors in square brackets. Table reports coefficient estimates from models fit to data on log number of admissions by 
single day of age. Sample is restricted to people admitted from home to California hospitals between January 1, 1992 and November 
30, 2002. All models include a quadratic polynomial in age, fully interacted with a dummy for age over 65. Dummy for just under 65 is 
set to 1 for people admitted in the 31 days before their 65th birthday. P-values reported in column 2 of each sub-panel are for the test 
that the coefficient of the dummy for just under 65 is equal to zero.



Table 3: Regression Discontinuity Estimates of Changes in Insurance Coverage
Medicare Uninsured

(1) (2) (3) (4) (1) (2) (3) (4)
Age Over 65 (x100) 43.9 47.6 47.5 45.8 -7.4 -8.1 -8.0 -7.9

[0.4] [0.4] [0.4] [0.6] [0.2] [0.2] [0.2] [0.3]
Year/Month/Sat/Sun N Y Y Y N Y Y Y
Race and Gender N Y Y Y N Y Y Y
Dummy Just Under 65 N Y Y Y N Y Y Y
Condition FE N N Y Y N N Y Y
Cubic Polynomial N N N Y N N N Y
Mean Age 64-65 (x100) 24.0 24.0 24.0 24.0 9.7 9.7 9.7 9.7
Observations 425,315 425,315 425,315 425,315 425,315 425,315 425,315 425,315
P-Value 0.00 0.00 0.00 0.00

Private Medicaid
(1) (2) (3) (4) (1) (2) (3) (4)

Age Over 65 (x100) -24.8 -26.9 -26.8 -26.0 -10.1 -10.9 -10.8 -9.8
[0.4] [0.4] [0.4] [0.6] [0.3] [0.3] [0.3] [0.35]

Year/Month/Sat/Sun N Y Y Y N Y Y Y
Race and Gender N Y Y Y N Y Y Y
Dummy Just Under 65 N Y Y Y N Y Y Y
Condition FE N N Y Y N N Y Y
Cubic Polynomial N N N Y N N N Y
Mean Age 64-65 (x100) 43.3 43.3 43.3 43.3 20.5 20.5 20.5 20.5
Observations 425,315 425,315 425,315 425,315 425,315 425,315 425,315 425,315
P-Value  0.00 0.15 0.00 0.00
Notes: Standard errors in square brackets. Table reports coefficient estimates from linear probability models fit to data on sample of 
people admitted from home to California hospitals between January 1, 1992 and November 30, 2002. All models include a quadratic 
polynomial in age, fully interacted with a dummy for age over 65. Dummy for just under 65 is set to 1 for people admitted to the hospital 
in the 31 days before their 65th birthday. Race and gender represent dummies for race/ethnicity and gender. Condition FE represents a 
set of fixed effects for primary admission diagnosis. Mean age 64-65 represents the mean of dependent variable among people with 
64<= age<65. P-values reported in column 2 of each sub-panel are for test that coefficients of additional covariates relative to the model 
in column 1 are jointly equal to zero. P-values reported in column 4 of each sub-panel are for test that coefficients of additional 
covariates relative to model in column 3 are jointly equal to zero.



Table 4: Regression Discontinuity Estimates of Changes in Treatment Intensity
Length of Stay Procedure Count Log Charges

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)
Age Over 65 0.37 0.36 0.35 0.39 0.09 0.10 0.11 0.13 0.024 0.026 0.026 0.036

[0.24] [0.26] [0.26] [0.35] [0.03] [0.03] [0.03] [0.04] [0.011] [0.011] [0.010] [0.013]
Year/Month/Sat/Sun N Y Y Y N Y Y Y N Y Y Y
Race and Gender N Y Y Y N Y Y Y N Y Y Y
Dummy Just Under 65 N Y Y Y N Y Y Y N Y Y Y
Condition FE N N Y Y N N Y Y N N Y Y
Cubic Polynomial N N N Y N N N Y N N N Y
Mean Age 64-65 8.12 8.12 8.12 8.12 2.50 2.50 2.50 2.50 9.757 9.757 9.757 9.757
Observations 407,386 407,386 407,386 407,386 407,386 407,386 407,386 407,386 352,652 352,652 352,652 352,652
P-Value 0.000 0.266 0.000 0.558 0.000 0.537
Notes: See notes to Table 3. Standard errors in square brackets.



Table 5: Changes in the use of Specific Procedures for the Two Most Common Causes of Admission in the Non-deferrable Sample

Principle Diagnosis: Acute Myocardial Infarction
Number of 
Procedures

No 
Procedures

Procedure 
88.56

Procedure 
37.22 

Procedure 
88.53 

Procedure 
36.01 

Procedure 
88.72 

Procedure 
99.29 

Procedure
36.06 

 Procedure
89.54 

 Procedure
39.61 

 Procedure 
37.23 

Age Over 65 0.44 -1.89 3.79 3.41 4.04 0.67 2.15 1.52 0.72 2.59 1.82 0.11
[0.12] [0.82] [1.54] [1.56] [1.57] [1.43] [1.41] [1.19] [1.08] [1.09] [1.09] [1.02]

Mean 64-65 5.00 7.90 53.76 47.78 45.46 29.08 28.01 19.07 17.58 14.11 13.22 11.74
Observations 39,170 39,170 39,170 39,170 39,170 39,170 39,170 39,170 39,170 39,170 39,170 39,170
R-squared 0.01 0.00 0.05 0.03 0.01 0.03 0.03 0.10 0.21 0.05 0.01 0.01

Principle Diagnosis: Obstructive Chronic Bronchitis with Acute Exacerbation
Number of 
Procedures

No 
Procedures

Procedure 
93.94 

Procedure 
89.65 

Procedure 
93.96 

Procedure 
89.54 

Procedure 
88.72 

Procedure 
96.04 

Procedure
96.71 

 Procedure
96.72 

 Procedure
89.52 

 Procedure 
38.93 

Age Over 65 0.00 2.01 -2.22 -0.07 -1.20 0.91 0.18 -0.04 -0.20 0.46 -0.60 -0.12
[0.05] [1.26] [0.89] [0.85] [0.69] [0.66] [0.65] [0.61] [0.48] [0.43] [0.46] [0.35]

Mean 64-65 1.19 55.38 14.66 13.56 8.13 7.00 6.80 6.18 3.80 2.68 3.34 1.89
Observations 60,514 60,514 60,514 60,514 60,514 60,514 60,514 60,514 60,514 60,514 60,514 60,514
R-squared 0.02 0.04 0.03 0.10 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00

Notes: Standard errors in square brackets. All models include a quadratic polynomial in age, fully interacted with a dummy for age over 65. Dummy for just under 65 is set to 1 for people 
admitted to the hospital in the 31 days before their 65th birthday. Race and gender represent dummies for race/ethnicity and gender. Table reports coefficient estimates from linear probability 
models for total number of procedures (column 1), event of no procedures (column 2) and indicators for specific procedures (columns 3-12) fit to subsamples of admissions with indicated 
principle admission diagnoses. Coefficient estimates for event of no procedures and for individual procedures (identified by procedure codes in column headings) are multiplied by 100, as are 
associated means for people with 64<=age<65. The procedures in the order they appear are: 88.56 Coronary arteriography using two catheters, 37.22 Left heart cardiac catheterization, 
88.53 Angiocardiography of left heart structures, 36.01 Percutaneous transluminal coronary angioplasty, 88.72 Diagnostic ultrasound of heart, 99.29 Injection or infusion of other therapeutic 
or prophylactic substance, 36.06 Insertion of non-drug-eluting coronary artery stent(s), 89.54 Electrographic monitoring, 39.61 Extracorporeal circulation auxiliary to open heart surgery, 37.23 
Combined right and left heart cardiac catheterization, 93.94 Respiratory medication administered by nebulizer, 89.65 Measurement of systemic arterial blood gases, 93.96 Other oxygen 
enrichment, 89.54 Electrographic monitoring, 88.72 Diagnostic ultrasound of heart, 96.04 Insertion of endotracheal tube, 96.71 Continuous mechanical ventilation for less than 96 consecutive 
hours, 96.72 Continuous mechanical ventilation for 96 consecutive hours or more, 89.52 Electrocardiogram, 38.93 Venous catheterization, not elsewhere classified.



Table 6: Regression Discontinuity Estimates of Changes in Transfer  and Readmission Probabilities
Across Hospitals Within Hospital

(1) (2) (3) (4) (1) (2) (3) (4)
Age Over 65 (x100) 0.35 0.40 0.48 0.86 0.91 0.97 0.93 0.94

[0.24] [0.25] [0.24] [0.33] [0.20] [0.20] [0.20] [0.27]
Year/Month/Sat/Sun N Y Y Y N Y Y Y
Race and Gender N Y Y Y N Y Y Y
Dummy Just Under 65 N Y Y Y N Y Y Y
Condition FE N N Y Y N N Y Y
Cubic Polynomial N N N Y N N N Y
Mean Age 64-65 (x100) 6.87 6.87 6.87 6.87 4.02 4.02 4.02 4.02
Observations 407,386 407,386 407,386 407,386 407,386 407,386 407,386 407,386
P-Value 0.000 0.236 0.000 0.436

Readmission Within 7 Days of Discharge Readmission Within 28 Days of Discharge
(1) (2) (3) (4) (1) (2) (3) (4)

Age Over 65 (x100) -0.36 -0.18 -0.16 -0.48 -0.92 -0.61 -0.63 -0.79
[0.24] [0.24] [0.24] [0.34] [0.36] [0.37] [0.37] [0.50]

Year/Month/Sat/Sun N Y Y Y N Y Y Y
Race and Gender N Y Y Y N Y Y Y
Dummy Just Under 65 N Y Y Y N Y Y Y
Condition FE N N Y Y N N Y Y
Cubic Polynomial N N N Y N N N Y
Mean Age 64-65 (x100) 6.59 6.59 6.59 6.59 17.02 17.02 17.02 17.02
Observations 407,386 407,386 407,386 407,386 407,386 407,386 407,386 407,386
P-Value 0.000 0.310 0.000 0.800
Notes: See notes to Table 3. Standard errors in square brackets. Admissions with missing Social Security Numbers cannot be tracked and 
are dropped from the sample used in this table



Table 7: Regression Discontinuity Estimates of Changes in Mortality Rates
Died Within 7 Days of Admission Died Within 14 Days of Admission Died Within 28 Days of Admission
(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

Age Over 65 (x100) -1.1 -1.1 -1.0 -0.7 -1.0 -1.0 -0.8 -0.7 -1.1 -1.0 -0.9 -0.6
[0.2] [0.2] [0.2] [0.3] [0.2] [0.2] [0.2] [0.3] [0.3] [0.3] [0.3] [0.4]

Year/Month/Sat/Sun N Y Y Y N Y Y Y N Y Y Y
Race and Gender N Y Y Y N Y Y Y N Y Y Y
Dummy Just Under 65 N Y Y Y N Y Y Y N Y Y Y
Condition FE N N Y Y N N Y Y N N Y Y
Cubic Polynomial N N N Y N N N Y N N N Y
Mean Age 64-65 (x 100) 5.1 5.1 5.1 5.1 7.1 7.1 7.1 7.1 9.8 9.8 9.8 9.8
Observations 407,386 407,386 407,386 407,386 407,386 407,386 407,386 407,386 407,386 407,386 407,386 407,386
P-Value  0.000  0.311  0.000  0.860  0.000  0.598

Died Within 90 Days of Admission Died Within 180 Days of Admission Died Within 365 Days of Admission
(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

Age Over 65 (x100) -1.1 -1.0 -0.9 -0.9 -1.2 -1.1 -0.8 -0.9 -1.0 -0.9 -0.7 -0.4
[0.3] [0.3] [0.3] [0.4] [0.4] [0.4] [0.3] [0.5] [0.4] [0.4] [0.4] [0.5]

Year/Month/Sat/Sun N Y Y Y N Y Y Y N Y Y Y
Race and Gender N Y Y Y N Y Y Y N Y Y Y
Dummy Just Under 65 N Y Y Y N Y Y Y N Y Y Y
Condition FE N N Y Y N N Y Y N N Y Y
Cubic Polynomial N N N Y N N N Y N N N Y
Mean Age 64-65 (x 100) 14.7 14.7 14.7 14.7 18.4 18.4 18.4 18.4 23.0 23.0 23.0 23.0
Observations 407,386 407,386 407,386 407,386 407,386 407,386 407,386 407,386 407,386 407,386 407,386 407,386
P-Value  0.000 0.466 0.000  0.154 0.000 0.104
Notes: See notes to Table 3. Standard errors in square brackets. Admissions with missing Social Security Numbers cannot be linked to death records and are dropped from the sample used 
in this table



Table 8: Lower Bound Estimates of Effect of Medicare Eligibility on 28-day Mortality for Various Samples

All Elective ER and 
Unplanned

ER and Unplanned
( > 6.62) (2.54-6.51) (0.96-2.54) ( < 0.96)

1. RD in Admissions % 7.12 11.85 2.43 3.23 3.57 2.70 0.56
2. RD in Mortality -0.46 -0.29 -0.49 0.27 -0.63 -0.45 -1.09
3. Just Under 65 death rate 5.10 3.29 6.86 2.68 7.41 6.87 10.25
4. Worst Case Bias -0.33 -0.36 -0.15 -0.10 -0.24 -0.17 -0.05
5. Lower Bound Estimate -0.13 0.06 -0.33 0.37 -0.39 -0.27 -1.04
6. SE on Lower Bound 0.07 0.09 0.12 0.16 0.25 0.24 0.29
7. Share of Obs 1.00 0.50 0.50 0.11 0.13 0.12 0.12
Notes: See text for discussion of lower bound formula. All terms are expressed as percentages. Entry in row 1 is estimated regression 
discontinuity (RD) in log admissions at age 65 (multiplied by 100). Entry in row 2 is estimated RD in 28-day mortality at age 65 (in 
percents). Entry in row 3 is estimated 28-day mortality rate for people just under 65 (in percents). Entry in row 4 is estimated worst-case 
bias in 28 day mortality caused by selective increase in admissions rates after age 65 (in percents). Entry in row 5 is lower bound 
estimate of effect of Medicare eligibility on 28-day mortality rate (in percents). Entry in row 6 is estimated standard error of lower-bound 
mortality effect (in percents) estimated by delta method. Entry in row 7 is share of total sample included in column sub-sample. Sub-
samples in columns 4-8 do not add up to overall sub-sample of ER and unplanned admissions in column 3 because admissions whose 
primary diagnosis accounts for less than 100 observations in the overall sample have been dropped.



Appendix A: Employment Rates by Age (1992-2003 NHIS)
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Appendix B: RDD in Admissions Estimated With a Cubic Polynomial

Non ER or Planned ER and Unplanned Weekend t-stat > 
6.62

Age Over 65 0.12028 0.13144 0.02568 0.03825 0.0332 0.0564
[0.00493] [0.00693] [0.00498] [0.00692] [0.01069] [0.01465]

Dummy Age 64.91-65 Y Y Y Y Y Y
Cubic Polynomial N Y N Y N Y
Observations 3,652 3,652 3,652 3,652 3,652 3,652
R-Squared 0.87 0.87 0.81 0.81 0.39 0.39

Weekend t-stat 
2.54-6.62

Weekend t-stat 
0.96-2.54

Weekend t-stat < 
0.96

Age Over 65 0.0369 0.04436 0.03045 0.04183 0.00608 0.01932
[0.00974] [0.01357] [0.00982] [0.01378] [0.00924] [0.01270]

Dummy Age 64.91-65 Y Y Y Y Y Y
Cubic Polynomial N Y N Y N Y
Observations 3,652 3,652 3,652 3,652 3,652 3,652
R-Squared 0.54 0.54 0.63 0.63 0.52 0.52
Notes:  See notes from Table 2.



Note: People become eligible for Medicare on the 1st day of the month in which they turn 65. The youngest age at which a person can be eligible is 365.24*65 - 30. Everyone is eligible after 
their 65th birthday 65*365.24.

Appendix C: Proportion on Medicare by Age in Days
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Notes: Mortality predicted from a quadratic in age, condition FE, gender, race, ethnicity, year, month and day of week of arrival to the hospital.

Appendix D: Predicted Mortality Probabilities
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